\qquad Hour \qquad

Momentum:
\qquad : Measure of the motion of an object equal to its mass x
velocity. (How hard it is to \qquad something)
\qquad
$\mathrm{m}=$ \qquad in \qquad
$\mathrm{v}=$ \qquad in

Momentum is abbreviated with the letter \qquad Units = \qquad
(In latin, momentum is impetus... m a nd I were already taken)
Which has more momentum:
you walking down the hall or semi-truck parked outside

Ex: Calc ulate your momentum if you are driving down the freeway at $36 \mathrm{~m} / \mathrm{s}$ a nd you a nd your carhave a mass of 945.5 kg .

Force and Impulse:

In order to change an object's momentum, we need to \qquad

Newton's $2^{\text {nd }}$ law can be used to calculate the force:
So: \square or \square or \square

$\mathrm{F}=$	$\mathrm{F} \Delta \mathrm{t}=$
$\Delta \mathrm{t}=$	
$\mathrm{M}=$	$\mathrm{m} \Delta \mathrm{v}=$
$\Delta \mathrm{v}=$	

When something hits with a force, we can change the \qquad by cradling it to lessen the impact. (Ex. Air bag, catching someone falling with a blanket)

Ex: Calculate the impulse needed to stop a 1.7 kg water balloon if it is initia lly traveling at $8 \mathrm{~m} / \mathrm{s}$. (-13.6 kg m/s)
\qquad Hour \qquad

1. What is the unit for momentum? \qquad Impulse? \qquad
2. What happens to the momentum if you move faster? \qquad
3. If your velocity triples (and mass rema ins constant), what ha ppensto your momentum? \qquad
4. If your mass triples (and velocity rema ins constant) what happens to your momentum? \qquad
5. Explain how an egg falling on a pillow has lessforce exerted on its shell than one falling on the table if they fall with the same momentum. (Think about the variables in impulse equation)
6. You (85 kg) are c ruising down the freeway at $55 \mathrm{mph}(24.6 \mathrm{~m} / \mathrm{s})$.
a. Calc ulate the force it would take to stop if you crashed and sla mmed into your airbag over 1.2 sec. (-1743 N)
b. How many g's would you experience in thiscrash? (2.09 g's)
c. Calculate the force it would take to stop if you crashed and sla mmed into the dashboard taking 0.018 sec to stop. (-116167 N)
d. How many g's would you experience in this crash? (139 g's)
7. A 0.42 kg soccer ball is moving downfield with a velocity of $12 \mathrm{~m} / \mathrm{s}$. A player kicks the ball so that it has a final velocity of $18 \mathrm{~m} / \mathrm{s}$ downfield.
a. What is the change in the ball's momentum? $(2.52 \mathrm{~kg} \mathrm{~m} / \mathrm{s})$
b. Find the force exerted by the player's foot if they are in contact for 0.02 sec . (126 N)
c. What is the impulse on the ball? $(2.52 \mathrm{~kg} \mathrm{~m} / \mathrm{s})$
d. What would be the unit of impulse? \qquad or \qquad (There are 2 versions of this equation, so there are 2 different units that are equivalent)
8. An 82 kg man dropsfrom rest from a diving board that is 3 m above the water a nd comesto rest in 0.55 sec a fter hitting the water. What FORCE did the water exert on him? (Find v first!) (1143.5 N)
